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Application 1/O

B Applications have data models appropriate to
domain

— Multidimensional typed arrays, images composed
of scan lines, variable length records

— Headers, attributes on data

B |/O systems have very simple data models
— Tree-based hierarchy of containers Graphic from J. Tannahill, LLNL
— Some containers have streams of bytes (files)

— Others hold collections of other containers
(directories or folders) ;

B Someone has to map from one to the other! 1M
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Common Approaches to Application I/O

B Root performs 1/O
Pro: trivially simple for “small” /0
Con: bandwidth limited by rate one client can sustain
Con: may not have enough memory on root to hold all data
B All processes access their own file
Pro: no communication or coordination necessary between processes
Pro: avoids some file system quirks (e.g. false sharing)
Con: for large process counts, lots of files created
Con: data often must be post-processed to recreate canonical dataset
Con: uncoordinated 1/O from all processes may swamp |/O system
B All processes access one file
Pro: only one file (per timestep etc.) to manage: fewer files overall

Pro: data can be stored in canonical representation, avoiding post-
processing

Con: can uncover inefficiencies in file systems (e.g. false sharing)
Con: uncoordinated I/O from all processes may swamp I/O system




Challenges in Application I/O

B |everaging aggregate communication and I/O bandwidth of clients

® .. .But not overwhelming a resource limited 1/0O system with uncoordinated
accesses!

B Limiting number of files that must be managed (also a performance issue)
B Avoiding unnecessary post-processing
B Avoiding file system quirks

B Often application teams spend so much time on this that they never get
any further:

— Interacting with storage through convenient abstractions
— Storing in portable formats

B Computer science teams that are experienced in parallel 1/0 have
developed software to tackle all of these problems

— Not the application's job.
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Software for Parallel I/0 in HPC

Application
High-level I/O Library

Application /O Middleware (MPI-IO)

/O Forwarding

File System ‘

I/O Hardware

Parallel File System

/O Hardware

B Applications require more software than just a parallel file system
B Support provided via multiple layers with distinct roles:

— Parallel file system maintains logical space, provides efficient access to
data (e.g. PVFS, GPFS, Lustre)

— 1/O Forwarding found on largest systems to assist with I/O scalability

— Middleware layer deals with organizing access by many processes
(e.g. MPI-IO, UPC-IO)

— High level I/O library maps app. abstractions to a structured,
portable file format (e.g. HDF5, Parallel netCDF)

B Goals: scalability, parallelism (high bandwidth), and usability




Why All This Software?

“All problems in computer science can be solved by another level of
indirection.” -- David Wheeler

B Parallel file systems must be general purpose to be viable products
— Many workloads for parallel file systems still include serial codes
— Most of our tools still operate on the UNIX “byte stream” file model

B |/O forwarding addresses HW constraints and helps us leverage existing file
system implementations at greater (unintended?) scales

B Programming model developers are not (usually) file system experts

— Implementing programming model optimizations on top of common file
system APls provides flexibility to move to new file systems

— Again, trying to stay as general purpose as possible

® High level I/O libraries mainly provide convenience functionality on top of
existing APIs

— Specifically attempting to cater to specific data models
— Enable code sharing between applications with similar models

— Standardize how contents of files are stored




The Parallel Virtual File System (PVFS)




Parallel Virtual File System (PVFS)
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An example PVFS file system, with large astrophysics checkpoints distributed across multiple 1/0
servers (I0S), while small bioinformatics files are each stored on a single 10S.

B File-based storage model, very similar to object based storage model
— Fragments of files stored on distributed 10 Servers (I0S)
* /O servers manage their own local storage
— Single server type can also store metadata
— Clients perform accesses in terms of byte ranges in files (region-oriented)
B Available for Linux OS and IBM Blue Gene systems
B Tightly-coupled MPI-10 implementation




PVFS Architecture

B Communication performed over existing
cluster network BwEe MMM S
— TCP/IP, InfiniBand, Myrinet, Portals

B Servers store data in local file systems

(e.g. ext3, XFS) I0S ‘|OS
— Local files store PVFS file strips @ @
— Berkeley DB currently used for _ :
metadata (rather than files) PVFS configured as scratch file system

B Mixed kernel-space, user-space
implementation PVFS| [PvFs| [PvFs| [PvFs

— VFS module in kernel with user-space
helper process

— User-space servers, interface for
kernel bypass on clients

B Commodity failover (e.g. Heartbeat) may
be used to set up active-active server
configuration for both metadata and data PVFS configured with redundancy




PVFS Files and Directories

B PVFS files are made up of objects holding
data (dataspaces) and a distribution function

B Directory dataspace holds metafile handles
B Metafile dataspace holds
— Permissions, owner, extended attributes
— References to dataspaces holding data
— Parameters for distribution function
B Datafiles hold the file data itself
— Usually one datafile on each server for parallelism
B Distribution function determines how data in datafiles maps into logical file

— By default file data is split into 64Kbyte blocks and distributed round-
robin into datafiles

— Because list of datafiles and distribution function don’t change, clients
may cache this information indefinitely

* No communication with server holding metadata during I/0O

Directory Metafile Datafiles




State, Consistency, and Caching

® |n GPFS and Lustre, clients are allowed to hold on to important file system state

— Locks are used to keep these in sync with data on storage or to prevent other
clients from accessing the data until it is committed

— Locks (which are state themselves) are further used for atomic 1/0O
— Problems: lock traffic is nondeterministic, client death becomes complicated
B PVFS does not hold critical file system state on clients (stateless)
— Clients may appear and disappear without impacting file system
* Much like a web server
— PVFS does provide a coherent view of file data
* Processes immediately see changes from others
— Does not provide atomic writes or reads
» Other software responsible for this coordination (e.g. MPI-10)
— Does provide atomic metadata operations
 Creating and removing files and directories atomically change the name space
— No locks necessary!
B Without locks to maintain coherence, caching possibilities are very limited
— Clients cache immutable metadata on files allowing I/O without metadata access

— Data caching restricted to executables and mmapped files (read-only)




MPI-10 Interface




MPI-IO

B The Message Passing Interface (MPI) is an interface standard for writing
message passing programs

— Most popular programming model on HPC systems
B MPI-IO is an 1/O interface specification for use in MPI apps
B Data model is same as POSIX

— Stream of bytes in a file
B Features:

— Collective 1/0

— Noncontiguous I/0O with MPI datatypes and file views

— Nonblocking I/O

— Fortran bindings (and additional languages)

B |[mplementations available on most platforms (more later)




Challenge: Describing Application Data
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B MPI _Type create subarray can describe any N-dimensional subarray of
an N-dimensional array

B |n this case we use it to pull out a 2-D tile
Tiles can overlap if we need them to
B Separate MPI_File set view call uses this type to select the file region




Challenge: Efficient File Creation

B File create rates can actually have a
significant performance impact

B |Improving the file system interface improves
performance for computational science

— Leverage communication in MPI-IO layer

File system interfaces force all

: : processes to open a file, causing
Time to Create Files Through MPI-I10 a storm of system calls.
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Challenge: Coordinating I/0O

I
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Independent 1/O Collective 1/0

B [ndependent I/O operations specify only what a single process will do

— Independent I/O calls do not pass on relationships between I/O on other processes
B Many applications have phases of computation and 1/O

— During I/0 phases, all processes read/write data

— We can say they are collectively accessing storage
B Collective I/O is coordinated access to storage by a group of processes

— Collective I/0O functions are called by all processes participating in I/O

— Allows I/O layers to know more about access as a whole, more opportunities for
optimization in lower software layers, better performance

A
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The Two-Phase I/O Optimization

]
oo (o oo (o

Initial State Phase 1: 1/0 Phase 2: Redistribution

Two-Phase Read Algorithm

B Problems with independent, noncontiguous access
— Lots of small accesses
— Independent data sieving reads lots of extra data, can exhibit false sharing
B [|dea: Reorganize access to match layout on disks
— Single processes use data sieving to get data for many
—  Often reduces total I/O through sharing of common blocks
Second “phase” redistributes data to final destinations
B Two-phase writes operate in reverse (redistribute then 1/0O)
—  Typically read/modify/write (like data sieving)
— Overhead is lower than independent access because there is little or no false sharing
B Aggregating to fewer nodes as part of this process is trivial (and implemented!)
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Challenge: Noncontiguous 1/O

e
Contiguous Noncontiguous Noncontiguous Noncontiguous
in File in Memory in Both

B Contiguous I/O moves data from a single memory block into a single file region
B Noncontiguous I/O has three forms:

— Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
B Structured data leads naturally to noncontiguous I/O (e.g. block decomposition)

B Describing noncontiguous accesses with a single operation passes more knowledge
to I/O system

Argonne



Noncontiguous I/O: Data Sieving

B Data sieving is used to combine lots

Memory [einq |eed  Ee] B of small accesses into a single larger
one

— Remote file systems (parallel or
not) tend to have high latencies

Buffer [ ~ Reducing # of operations
.................. i Reducing
® Similar to how a block-based file

system interacts with storage

File _ B Generally very effective, but not as

good as having a PFS that supports
Data Sieving Read Sequence noncontiguous access




MPI-10 Wrap-Up

B MPI-IO provides a rich interface allowing us to describe
— Noncontiguous accesses in memory, file, or both
— Collective 1/0

B This allows implementations to perform many transformations that result in
better I/O performance

B Still a big gap between application and MPI-10 storage models
B Forms solid basis for high-level I/O libraries
— But they must take advantage of these features!




Higher Level I/O Interfaces




Challenge: Improving Usability of Storage

B High level libraries are designed to make life easier for application writers
B Present APIs more appropriate for computational science
— Typed data
— Noncontiguous regions in memory and file
— Multidimensional arrays and 1/O on subsets of these arrays
B Provide structure to files
— Well-defined, portable formats
— Self-describing
— Organization of data in file
— Interfaces for discovering contents
B Both of our example interfaces are implemented on top of MPI-IO




PnetCDF Interface and File Format




Parallel netCDF (PnetCDF)

B Based on original “Network Common Data Format” (netCDF) work from
Unidata

— Derived from their source code

B Data Model:
— Collection of variables in single file
— Typed, multidimensional array variables
— Attributes on file and variables

B Features:
— C and Fortran interfaces
— Portable data format (identical to netCDF)
— Noncontiguous I/O in memory using MPI datatypes
— Noncontiguous I/O in file using sub-arrays
— Collective 1/0

B Unrelated to netCDF-4 work




netCDF/PnetCDF Files

B PnetCDF files consist of three regions

o Header netCDF Header

— Non-record variables (all dimensions specified)

— Record variables (ones with an unlimited
dimension)

B Record variables are interleaved, so using more than
one in a file is likely to result in poor performance due
to noncontiguous accesses ot Record For Bui Fecord Vor

B Data is always written in a big-endian format -

1st non-record variable

2nd non—record variable

nth non—record variable

Fixed—-=ized data

A
o

1st Record for rth Record Var

2nd Record for 1st,
rth Record

.....

Record Data
[
=
o

ERecords grow in the UHLINITED
dimension for 1,2,..., rth war
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Data in PnetCDF

B \Write case: “bimodal”
B Create a dataset (file)
— Puts dataset in define mode
— Allows us to describe the contents
* Define dimensions for variables
» Define variables using dimensions
 Store attributes if desired (for variable or dataset)
Switch from define mode to data mode to write variables
Store variable data
Close the dataset
Read case similar:
— No define mode
— Query dataset for attributes, variables
— Read data




Example: FLASH with PnetCDF

B FLASH AMR structures do not map directly to netCDF multidimensional
arrays

B Must create mapping of the in-memory FLASH data structures into a
representation in netCDF multidimensional arrays

B Choseto
— Place all checkpoint data in a single file
— Impose a linear ordering on the AMR blocks
* Use 4D variables
— Store each FLASH variable in its own netCDF variable
» Skip ghost cells
— Record attributes describing run time, total blocks, etc.




Defining Dimensions

int status, ncid, dim_tot_blks, dim_nxb,
dim_nyb, dim_nzb;

MPI_Info hints;

/* create dataset (file) */

status = ncmpi_create(MPI_COMM_WORLD, filename,
NC _CLOBBER, hints, &file_id);

/* define dimensions */
status = ncmpi_def dim(ncid, "dim_tot blks",
tot_blk w
status = ncmpi_def dim(ncid, "diW Each dimension gets
nzones_block[O . ————— aunique reference
status = ncmpi_def d rcid; "dim_nyb",
nzones block[1], &dim_nyb);
status = ncmpi_def dim(ncid, "dim_nzb",
nzones block[2], &dim_nzb);




Creating Variables

int dims = 4, dimids[4];
int varids[NVARS];
/* define variables (X changes most quickly) */

dimids[0] = dim_tot_blks; T _ ,
Same dimensions used

dimids[1] = dim_nzb; for all variables
dimids[2] = dim_nyb;

dimids[3] = dim_nxb; /
for (i=0; i < NVARS; i++) {

status = ncmpi_def var(ncid, unk_label[i],
NC DOUBLE, dims, dimids, &varidsli]);




Writing Variables

double *unknowns; /* unknowns[blk][nzb][nyb][nxb] */
size_t start_4d[4], count 4d[4];
start 4d[0] = global_offset; /* different for each process */
start 4d[1] = start 4d[2] = start 4d[3] = O;
count_4d[0] = local_blocks;
count_4d[1] = nzb; count 4d[2] = nyb; count 4d[3] = nxb;
for (i=0; i < NVARS; i++) {
/* ... build datatype “mpi_type” describing values of a single variable ...
*/
/* collectively write out all values of a single variable */
ncmpi_put vara all(ncid, varids[i], start 4d, count 4d,

nowns, 1, mpi_ ;
} _umkno: PLIyPe)
status = ncmpi_close(file id); \

Typical MPI buffer-
count-type tuple




Inside PnetCDF Define Mode

B |n define mode (collective)

— Use MPI_File_open to create file at create time

— Set hints as appropriate (more later)

— Locally cache header information in memory

» All changes are made to local copies at each process

B At ncmpi_enddef

— Process 0 writes header with MPI_File write_at

- MPI_Bcast result to others

— Everyone has header data in memory, understands placement of all
variables

* No need for any additional header I/O during data mode!




Inside PnetCDF Data Mode

B |nside ncmpi_put vara_all (once per variable)
— Each process performs data conversion into internal buffer
— Uses MPI_File_set view to define file region
» Contiguous region for each process in FLASH case
- MPI_File_write_all collectively writes data
B At ncmpi_close
- MPI_File_close ensures data is written to storage

B MPI-IO performs optimizations
— Two-phase possibly applied when writing variables
B MPI-IO makes PFS calls

— PFS client code communicates with servers and stores data




PnetCDF Wrap-Up

B PnetCDF gives us
— Simple, portable, self-describing container for data
— Collective 1/0
— Data structures closely mapping to the variables described
B |[f PnetCDF meets application needs, it is likely to give good performance
— Type conversion to portable format does add overhead
B Some limits on (CDF-2) file format:
— Fixed-size variable: <4 GiB
— One record's worth of record variable: < 4 GiB
— 232 -1 records




HDF5 Interface and File Format




HDF5

B Hierarchical Data Format, from the HDF Group (formerly of NCSA)
B Data Model:

— Hierarchical data organization in single file

— Typed, multidimensional array storage

— Attributes on dataset, data
B Features:

— C, C++, and Fortran interfaces

— Portable data format

— Optional compression (not in parallel I/O mode)

— Data reordering (chunking)

— Noncontiguous I/0 (memory and file) with hyperslabs




HDF5 Files

HDF5 File “chkpt007.h5”

Dataset “temp”
datatype = H5T NATIVE DOUBLE
J dataspace = (10, 20)

20
]

g

attributes = ...

B HDFS5 files consist of groups, datasets, and attributes
— Groups are like directories, holding other groups and datasets
— Datasets hold an array of typed data
» A datatype describes the type (not an MPI datatype)
» A dataspace gives the dimensions of the array

— Attributes are small datasets associated with the file, a group, or another
dataset

» Also have a datatype and dataspace
* May only be accessed as a unit




HDF5 Data Chunking

B Apps often read subsets of arrays (subarrays)

B Performance of subarray access depends in part on how data is laid out in
the file

— e.g. column vs. row major
B Apps also sometimes store sparse data sets
B Chunking describes a reordering of array data
— Subarray placement in file determined lazily
— Can reduce worst-case performance for subarray access
— Can lead to efficient storage of sparse data
B Dynamic placement of chunks in file requires coordination
— Coordination imposes overhead and can impact performance




Inside HDF5

MPI_File_open used to open file
Because there is no “define” mode, file layout is determined at write time
In HDF write call:
— Processes communicate to determine file layout
* Process 0 performs metadata updates
— Call MPI_File_set view
— Call MPI_File_write_all to collectively write
 If this was turned on
User could have defined noncontiguous region in memory or file

In FLASH application, data is kept in native format and converted at read
time (defers overhead)

— Could store in some other format if desired

At the MPI-10 layer:
— Metadata updates at every write are a bit of a bottleneck
* MPI-IO from process 0 introduces some skew




Concluding Remarks




Wrapping Up

B Computational science applications present a complex set of challenges with
respect to their I/O needs

— Very high degrees of concurrency in access
— Very high bandwidth requirements, bursty 1/0

— Effective means for mapping scientific data models into storage
structures

B A layered software architecture has evolved (and is still evolving) to address
the needs of these applications

— Relies on adequate hardware resources
— Also typically relies on a commercial parallel file system
— Software specific to HPC helps bridge the gap

B The gap is growing between the needs of computational science applications
and the capabilities offered by storage vendors and commercial parallel file
systems

— Opportunities for new approaches to make their way into the 1/0
software stack




Printed References

B John May, Parallel I/O for High Performance Computing, Morgan Kaufmann,
October 9, 2000.

— Good coverage of basic concepts, some MPI-IO, HDF5, and serial
netCDF

B William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI1-2: Advanced

Features of the Message Passing Interface, MIT Press, November 26,
1999.

— In-depth coverage of MPI-IO API, including a very detailed description of
the MPI-10 consistency semantics




On-Line References (1 of 3)

B netCDF and netCDF-4
— http://www.unidata.ucar.edu/packages/netcdf/
B PnetCDF
— http://www.mcs.anl.gov/parallel-netcdf/
® ROMIO MPI-IO
— http://www.mcs.anl.gov/romio/
B HDF5 and HDF5 Tutorial
— http://www.hdfgroup.org/
— http://hdf.ncsa.uiuc.edu/HDF5/
— http://hdf.ncsa.uiuc.edu/HDF5/doc/Tutor/index.html




On-Line References (2 of 3)

B PVFS
http://www.pvfs.org/

B [ustre
http://www.lustre.org/

B GPFS
http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/




On-Line References (3 of 3)

LLNL 1/O tests (IOR, fdtree, mdtest)

— http://www.lInl.gov/icc/Ic/siop/downloads/download.html

Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io, mpi-md-test)
— http://www.mcs.anl.gov/pio-benchmark/

FLASH 1/0O benchmark

— http://www.mcs.anl.gov/pio-benchmark/

— http://flash.uchicago.edu/~jbgallag/io _bench/ (original version)
b_eff io test

— http://www.hlrs.de/organization/par/services/models/mpi/b_eff io/
mpiBLAST

— http://www.mpiblast.org
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